97 / 2024-08-15 16:54:16
A unified diffusion model for image understanding via feature aggregation and noise aware. AITC 2024+空天之星
Diffusion model, Class-conditional image generation, Image classification.
摘要待审
裴健宁 / aircas
韩岗 / 后勤保障部信息中心
冯瑛超 / 中国科学院空天信息创新研究院
刁文辉 / 中国科学院空天信息研究院
邓波 / aircas
郭智 / aircas

Nowadays, the diffusion-based image generation model has become a popular trend. These models focus on noise perception entirely, ignoring the understanding of the images, which makes it hard to improve further. To bridge this gap, we introduce a novel model architecture that combines a feature aggregation encoder and a noise aware decoder. Our encoder extracts multi-level features using the ViT architecture backbone and improves the understanding of our model. Our decoder is responsible for the awareness of noise by the interaction between noise intensity and image features. Combined with our encoder and decoder, our model generates realistic images. Experiments show that our model can achieve a competitive result in both the class conditional image generation and image classification tasks compared with the baseline.

重要日期
  • 会议日期

    09月20日

    2024

    09月22日

    2024

  • 08月30日 2024

    初稿截稿日期

  • 09月22日 2024

    注册截止日期

主办单位
山东省人民政府
中国电子学会
承办单位
中国科学院学部
中国科学院空天信创新研究所息
复旦大学
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询
Baidu
map