30 / 2024-08-09 11:27:24
An Resource Allocation Strategy in Space-Air-Ground Integrated Network
unmanned aerial vehicles,task offloading,Low Earth orbit satellites,deep reinforcement learning,Space-Ground integrated network framework
摘要待审
李宇轩 / 航天工程大学
代健美 / 航天工程大学
朱诗兵 / 航天工程大学
孙希亚 / 航天工程大学
张中华 / 解放军23厂
Conventional unmanned aerial vehicles (UAVs) suffer from constrained computational resources, hindering their ability to undertake extensive data processing and promptly fulfill real-time tasks, particularly in areas like face identification. To address this challenge, we have devised a space-air-ground integrated network for data offloading, emphasizing the utilization of Low Earth orbit (LEO) satellites to assist in UAV data offloading. This framework introduces a collaborative computation offloading strategy tailored for LEO satellites and UAVs, wherein computationally intensive data segments are transmitted to the satellite for processing. This methodology effectively curtails transmission delays and offers greater flexibility in task allocation. Recognizing the dynamic interplay between satellite and UAV networks, we have framed the collaborative computation offloading challenge as a Distributed Markov Decision Process and developed a computation offloading algorithm leveraging Multi-Agent Proximal Policy Optimization (MAPPO) to derive efficient offloading strategies. Our simulation outcomes underscore the substantial improvement in system computing performance and latency reduction achieved by our proposed approach.

 
重要日期
  • 会议日期

    09月20日

    2024

    09月22日

    2024

  • 08月30日 2024

    初稿截稿日期

  • 09月22日 2024

    注册截止日期

主办单位
山东省人民政府
中国电子学会
承办单位
中国科学院学部
中国科学院空天信创新研究所息
复旦大学
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询
Baidu
map